进行机器学习有哪些课程?
【导读】现在的生产和操作越来越机械化,所需要的专业人才也更多,因而市场之间就存在了人才急缺的现象,学习人工智能工程师,对于个人而言有很好的帮助,那么,进行机器学习有哪些课程?
1. 入门机器学习
熟悉机器学习领域的经典算法、模型及实现的任务等,同时学习搭建和配置机器学习环境,并学会用线性回归解决一个实际问题。
2. Logistic回归分析、神经网络、SVM
掌握数据集探索;理解分类任务算法(Logistic回归、神经网络、SVM)原理;学会在scikit-learn框架下采用各分类算法分类具体任务。
3. 决策树模型与集成学习算法
损失函数:信息增益、Gini系数;划分:穷举搜索、近似搜索;正则:L2/L1;预防过拟合:预剪枝及后剪枝;Bagging原理;Boosting原理;流行的GBDT工具:XGBoost和LightGBM。
4. 聚类、降维、矩阵分解
主成分分析(PCA);独立成分分析(ICA);非负矩阵分解(NFM);隐因子模型(LFM);KMeans聚类和混合高斯模型GMM(EM算法);吸引子传播聚类算法(Affinity Propagation聚类算法)。
5. 特征工程、模型融合& 推荐系统实现
学会常用数据预处理方法及特征编码方法;学习特征工程的一般处理原则;组合各种特征工程技术和机器学习算法实现推荐系统。
希望大家能够明确自己的发展方向和需求,选择合适的行业发挥自己的才能,在未来能有更好的生活。关于“进行机器学习有哪些课程?”有需要的可以积极报考,通过培训和考试,拿到证书。
人工智能工程师相关文章推荐
|人工智能工程师最新文章推荐
|人工智能工程师最新经验推荐
- 01 北京大约多久能解除疫情?
- 02 《中华人民共和国车船税法》全文
- 03 医师级别划分 十二级
- 04 这几种情况千万不要考消防工程师证书
- 05 2020年开年全球大事件你知道吗?
- 06 公务员存在不同级别 一级科员和一级行政执法员区别在哪
- 07 博士,硕士,研究生哪个学历高
- 08 中级资格证书有哪些
- 09 成人高考和自考有什么区别