2020年数据分析面试解答技巧:问答题

2020-11-20 17:54 13浏览 2626字数

大数据工程师报名、考试、查分时间 免费短信提醒

地区:

获取验证 立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

【导读】众所周知,随着社会的发展,数据分析师成为了炙手可热的热门执业,一方面是其高薪待遇另一方面就是其未来广阔的发展前景。一般情况下用人单位会给问答题和动手题来检测应聘者的真实实力,可以说面试笔试是非常重要的一个环节。它可以直接测验你对数据分析具体理论的掌握程度和动手操作的能力。为此小编就以此为例和大家说说2020年数据分析面试解答技巧:问答题,希望对大家有所帮助。

问答题

1. 用一种编程语言,实现 1+2+3+4+5+…+100。

这道题考察的就是语言基础,你可以用自己熟悉的语言完成这道题,比如 Python、Java、PHP、C++ 等。这里我用 Python 举例:

sum = 0

for number in range(1,101):

sum = sum + number

print(sum)

2. 如何理解过拟合?

过拟合和欠拟合一样,都是数据挖掘的基本概念。过拟合指的就是数据训练得太好,在实际的测试环境中可能会产生错误,所以适当的剪枝对数据挖掘算法来说也是很重要的。

欠拟合则是指机器学习得不充分,数据样本太少,不足以让机器形成自我认知。

3. 为什么说朴素贝叶斯是“朴素”的?

朴素贝叶斯是一种简单但极为强大的预测建模算法。之所以称为朴素贝叶斯,是因为它假设每个输入变量是独立的。这是一个强硬的假设,实际情况并不一定,但是这项技术对于绝大部分的复杂问题仍然非常有效。

4. SVM 最重要的思想是什么?

SVM 计算的过程就是帮我们找到超平面的过程,它有个核心的概念叫:分类间隔。SVM 的目标就是找出所有分类间隔中最大的那个值对应的超平面。在数学上,这是一个凸优化问题。同样我们根据数据是否线性可分,把 SVM 分成硬间隔 SVM、软间隔 SVM 和非线性 SVM。

5. K-Means 和 KNN 算法的区别是什么?

首先,这两个算法解决的是数据挖掘中的两类问题。K-Means是聚类算法,KNN是分类算法。其次,这两个算法分别是两种不同的学习方式。K-Means是非监督学习,也就是不需要事先给出分类标签,而KNN是有监督学习,需要我们给出训练数据的分类标识。最后,K值的含义不同。K-Means中的K值代表K类。KNN中的K值代表K个最接近的邻居。

以上就是小编今天给大家整理发送的关于“2020年数据分析面试解答技巧:问答题”的相关内容,希望对大家有所帮助。想了解更多关于数据分析及人工智能就业岗位分析,关注小编持续更新。


转载请联系作者获得授权,并标注“文章作者”。

后发表评论
0条评论
  • 安国庆

    19:00-21:00 19:00-21:00

    建设工程法人制度2、代理制度

    一级建造师

  • 刘刘球

    19:00-20:30 19:00-20:30

    【感恩节】宠粉福利,好课7折,直播送周边

    健康管理师

  • 石惠珠

    19:30-20:30 19:30-20:30

    进阶高级职称暨软考报考指导

    软考高级职称

环球网校移动课堂APP 直播、听课。职达未来!

安卓版

下载

iPhone版

下载
环球网校快问 · 文章RSS订阅 · 问答RSS订阅 · 最新文章 · 最新问题 · 快问经验
Copy 2018 https://wenda.hqwx.com/ All Rright Reserved. 京ICP备16038139号-3 / Smrz 京ICP备16038139号-3/ 举报电话:400-678-3456 /