首页 直播 App
当前位置: 首页 > 大数据工程师 > 大数据工程师文章 > 大数据挖掘步骤都包括哪些?

大数据挖掘步骤都包括哪些?

发布时间:2021-02-22 15:48 来源:环球网校 点击量: 1081

大数据工程师报名、考试、查分时间 免费短信提醒

地区:

获取验证 立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

【导语】数据挖掘基本步骤,数据挖掘过程定义问题、建立数据挖掘库、分析数据、准备数据、建立模型、评价模型和实施。挖掘出潜在的模式,帮助决策者调整市场策略,减少风险,作出正确的决策,那么大数据挖掘步骤都包括哪些呢?

大数据挖掘步骤都包括哪些.png

1、定义问题

在开始知识发现之前最先的也是最重要的要求就是了解数据和业务问题。必须要对目标有一个清晰明确的定义,即决定到底想干什么。比如,想提高电子信箱的利用率时,想做的可能是“提高用户使用率”,也可能是“提高一次用户使用的价值”,要解决这两个问题而建立的模型几乎是完全不同的,必须做出决定。

2、建立数据挖掘库

建立数据挖掘库包括以下几个步骤:数据收集,数据描述,选择,数据质量评估和数据清理,合并与整合,构建元数据,加载数据挖掘库,维护数据挖掘库。

3、分析数据

分析的目的是找到对预测输出影响最大的数据字段,和决定是否需要定义导出字段。如果数据集包含成百上千的字段,那么浏览分析这些数据将是一件非常耗时和累人的事情,这时需要选择一个具有好的界面和功能强大的工具软件来协助你完成这些事情。

4、准备数据

建立模型之前的最后一步数据准备工作。可以把此步骤分为四个部分:选择变量,选择记录,创建新变量,转换变量。

5、建立模型

建立模型是一个反复的过程。需要仔细考察不同的模型以判断哪个模型对面对的商业问题最有用。先用一部分数据建立模型,然后再用剩下的数据来测试和验证这个得到的模型。有时还有第三个数据集,称为验证集,因为测试集可能受模型的特性的影响,这时需要一个独立的数据集来验证模型的准确性。训练和测试数据挖掘模型需要把数据至少分成两个部分,一个用于模型训练,另一个用于模型测试。

6、评价模型

模型建立好之后,必须评价得到的结果、解释模型的价值。从测试集中得到的准确率只对用于建立模型的数据有意义。在实际应用中,需要进一步了解错误的类型和由此带来的相关费用的多少。

关于大数据挖掘步骤,就给大家分享到这里了,希望想要学习大数据技术的大家,能够好好关注一下,想要学更多大数据技术,希望大家抓住机会,加油!

  • 张君

    19:00-20:00 19:00-20:00 12月23日 19:00-20:00

    2025管理备考指导

    一级建造师

  • 安国庆

    19:00-20:00 19:00-20:00 12月24日 19:00-20:00

    备考指导

    一级建造师

  • 张湧

    19:00-20:00 19:00-20:00 12月25日 19:00-20:00

    2025经济备考指导

    一级建造师

  • 赵珊珊

    19:00-20:00 19:00-20:00 12月26日 19:00-20:00

    2025水利备考指导

    一级建造师

  • 吴然

    19:00-20:00 19:00-20:00 12月26日 19:00-20:00

    2025公路备考指导

    一级建造师

出版物经营许可证|京B2-20210770| 京公网安备 11010802033350号|京ICP备16038139号|节目制作经营许可证(京)字20130号|京网文(2021)2566-713号
知春路校区:北京市海淀区知春路7号致真大厦D座4层北区(地铁10号线西土城出A口)|邮编:100191
版权所有 2003-2021 北京环球创智软件有限公司|联系客服|营业执照