大数据分析的目的及意义

  • 原创经验
  • |
  • 更新:
  • |

大数据分析的结果可以给企业带来决策影响,也同时关系到企业的利益体现,大数据分析正在为企业带来了新的变化,主要是帮助企业分析客户数据,进一步掌握了解客户数据,以便做出有针对性的决策。那么,大数据分析的目的及意义有哪些呢?今天就跟随小编一起来了解下吧!


具体如下

  1. 1

    数据分析的目的

    1、多维度分析

    因为企业的产品或者业务在现有的环境下受到的印象因素很多,产品好不好,能不能满足用户的需求,市场需求大不大,竞争对手的行为以及用户体验度好不好等都是可以作为大数据分析的切入点,因此需要多维度的对数据进行整理和分析,才能最终找到提高产品性能或者改进业务能力的方法。

    2、注意每一种大数据分析工具的适用性

    一个大数据分析的过程中,并不是说只要采用一种大数据分析的工具就可以了,因为数据量的不一样,想要得到的数据结果也不一样,不一样的要求对于数据分析的要求不一致,因此适用的大数据分析工具也要是不一样的,如果数据样本的数据多,或者数据样本的质量不高,以及没有应用匹配的大数据分析工具都会影响到最终的数据分析的正确性。

    3、正确的整合数据

    在收集数据进行预处理放入数据库进行分析这个过程中,要选择好分析的方法,以及按照要求整理整合的数据存放至数据库,并且要求数据之间进行转化,因为数据的格式不一样,我们通常需要将数据进行整合,有的时候可能是几个变量整合为一个,有的时候是一个变量整合为另几个变量,整合好数据才能减少分析结果的误差。

    4、数据结果可视化

    通过前面的整理和分析,形成了相应可以体现预测趋势的结果,将数据结果可视化,才能提高企业信息的透明度,提高企业效率,帮助企业的业务处理更加的方便快捷。

    大数据分析的目的及意义

  2. 2

    大数据分析的技巧有哪些?

    一、多种知识的掌握

    为了解决数据量大的问题,大数据平台(例如:Apache Hadoop、LexisNexis HPPC)要求数据是被整理过的。数据分析员应该具有大数据平台应用的全方位知识,这样才能熟练的应用数据平台处理大数据。

    二、创新——好奇

    随着数据变化速度的加快,经常也会有新的发现和问题出现,数据分析员应该对那些变化敏感、对新发现好奇,并且找出应对新问题的方法。他/她也要热情的及时相互沟通,从新问题中探索新产品的思路和解决方案,成为产品创新的驾驭者。

    三、商业技能

    数据分析员多元化的性质决定了数据分析员要好很强的沟通能力,在企业里数据分析员必须和不同的人沟通,其中包括:沟通和理解业务需求、应用程序的要求、把数据的模式和关系翻译给市场部、产品开发组和公司高管看。对于企业来说有效的沟通是及时采取行动应对大数据新发现的关键。数据分析员应该是能联系所有,很好的沟通者。

  3. 3

    常见的大数据业务模型有哪些?

    业务流程实体模型指的是对于某一业务流程情景而界定的,用以解决困难的某些实体模型,这种实体模型跟上边实体模型的差别取决于情景化的运用。

    1、会员数据化运营分析模型

    类型:会员细分模型、会员价值模型、会员活跃度模型、会员流失预测模型、会员特征分析模型、市场营销回应预测模型。

    2、商品数据化运营分析模型

    类型:商品价格敏感度模型、新产品市场定位模型、销售预测模型、商品关联销售模型、异常订单检测模型、商品规划的最优组合。

    3、流量数据化运营分析模型

    类型:流量波动检测、渠道特征聚类、广告整合传播模型、流量预测模型。

    4、内容数据化运营分析模型

    类型:情感分析模型、搜索优化模型、文章关键字模型、主题模型、垃圾信息检测模型。

注意事项

  • 以上就是小编今天给大家整理分享的关于“大数据分析的目的及意义”的相关内容,希望对大家有所帮助。更多相关内容,关注小编,持续更新。


作者声明:本篇经验系本人依照真实经历原创,未经许可,谢绝转载。