从业者怎样进行大数据可视化分析?
2021-05-19 15:50
716浏览
1回答
大数据可视化其主要目的是借助图形手段,清晰、有效地进行传达与沟通信息,其中,数据的可视化表示被定义为一种以某种形式提取的信息,包括相应信息单元的各种属性和变量。那么,从业者怎样进行大数据可视化分析?
转载请联系作者获得授权,并标注“文章作者”。
最新文章|
最新问题|
最新经验
一、需求分析
需求分析是大数据可视化项目开展的前提,要描述项目背景与目的、业务目标、业务范围、业务需求和功能需求等内容,明确实施单位对可视化的期望和需求。包括需要分析的主题、各主题可能查看的角度、需要发泄企业各方面的规律、用户的需求等内容。
二、建设数据仓库/数据集市的模型
数据仓库/数据集市的模型是在需求分析的基础上建立起来的。数据仓库/数据集市建模除了数据库的ER建模和关系建模,还包括专门针对数据仓库的维度建模技术。
三、数据抽取、清洗、转换、加载(ETL)
数据抽取是指将数据仓库/集市需要的数据从各个业务系统中抽离出来,因为每个业务系统的数据质量不同,所以要对每个数据源建立不同的抽取程序,每个数据抽取流程都需要使用接口将元数据传送到清洗和转换阶段。数据清洗的目的是保证抽取的原数据的质量符合数据仓库/集市的要求并保持数据的一致性。
四、建立可视化场景
建立可视化场景是对数据仓库/集市中的数据进行分析处理的成果,用户能够借此从多个角度查看企业/单位的运营状况,按照不同的主题和方式探查企业/单位业务内容的核心数据,从而作出更精准的预测和判断。