一个合格的数据分析师应该必备哪些知识结构?

  • 原创经验
  • |
  • 更新:
  • |

优秀的数据分析师需要具备这样一些素质:有扎实的 SQL 基础,熟练使用 Excel,有统计学基础,至少掌握一门数据挖掘语言 (R、SAS、Python、SPSS) ,有良好的沟通和表达能力,做好不断学习的准备,有较强的数据敏感度和逻辑思维能力。

一个合格的数据分析师应该必备哪些知识结构?

  1. 1

    一个合格的数据分析师应该必备哪些知识结构?

    统计相关的数学知识

    数学知识是数据分析师的基础知识。

    对于初级数据分析师,了解一些描述统计相关的基础内容,有一定的公式计算能力即可,了解常用统计模型算法则是加分。

    对于高级数据分析师,统计模型相关知识是必备能力,线性代数(主要是矩阵计算相关知识)最好也有一定的了解。

    而对于数据挖掘工程师,除了统计学以外,各类算法也需要熟练使用,对数学的要求是最高的。

    趁手的工具

    对于初级数据分析师,玩转Excel是必须的,数据透视表和公式使用必须熟练,VBA是加分。另外,还要学会一个统计分析工具,SPSS作为入门是比较好的。

    对于高级数据分析师,使用分析工具是核心能力,VBA基本必备,SPSS/SAS/R至少要熟练使用其中之一,其他分析工具(如Matlab)视情况而定。

    对于数据挖掘工程师……嗯,会用用Excel就行了,主要工作要靠写代码来解决呢。

  2. 2

    一个合格的数据分析师应该必备哪些知识结构?

    统计相关的数学知识

    数学知识是数据分析师的基础知识。

    对于初级数据分析师,了解一些描述统计相关的基础内容,有一定的公式计算能力即可,了解常用统计模型算法则是加分。

    对于高级数据分析师,统计模型相关知识是必备能力,线性代数(主要是矩阵计算相关知识)最好也有一定的了解。

    而对于数据挖掘工程师,除了统计学以外,各类算法也需要熟练使用,对数学的要求是最高的。

    趁手的工具

    对于初级数据分析师,玩转Excel是必须的,数据透视表和公式使用必须熟练,VBA是加分。另外,还要学会一个统计分析工具,SPSS作为入门是比较好的。

    对于高级数据分析师,使用分析工具是核心能力,VBA基本必备,SPSS/SAS/R至少要熟练使用其中之一,其他分析工具(如Matlab)视情况而定。

    对于数据挖掘工程师……嗯,会用用Excel就行了,主要工作要靠写代码来解决呢。

    一个合格的数据分析师应该必备哪些知识结构?

  3. 3

    Python语言

    对于初级数据分析师,会写SQL查询,有需要的话写写Hadoop和Hive查询,基本就OK了。

    对于高级数据分析师,除了SQL以外,学习Python是很有必要的,用来获取和处理数据都是事半功倍。当然其他编程语言也是可以的。

    对于数据挖掘工程师,Hadoop得熟悉,Python/Java/C++至少得熟悉一门,Shell得会用……总之编程语言绝对是数据挖掘工程师的最核心能力了。

    业务理解能力

    业务理解说是数据分析师所有工作的基础也不为过,数据的获取方案、指标的选取、乃至最终结论的洞察,都依赖于数据分析师对业务本身的理解。

    对于初级数据分析师,主要工作是提取数据和做一些简单图表,以及少量的洞察结论,拥有对业务的基本了解就可以。

    对于高级数据分析师,需要对业务有较为深入的了解,能够基于数据,提炼出有效观点,对实际业务能有所帮助。

    对于数据挖掘工程师,对业务有基本了解就可以,重点还是需要放在发挥自己的技术能力上。

    逻辑思维

  4. 4

    理工男都具有的思维。

    对于初级数据分析师,逻辑思维主要体现在数据分析过程中每一步都有目的性,知道自己需要用什么样的手段,达到什么样的目标。

    对于高级数据分析师,逻辑思维主要体现在搭建完整有效的分析框架,了解分析对象之间的关联关系,清楚每一个指标变化的前因后果,会给业务带来的影响。

    对于数据挖掘工程师,逻辑思维除了体现在和业务相关的分析工作上,还包括算法逻辑,程序逻辑等,所以对逻辑思维的要求也是最高的。

    大数据可视化工具

    数据可视化说起来很高大上,其实包括的范围很广,做个PPT里边放上数据图表也可以算是数据可视化,所以我认为这是一项普遍需要的能力。

    对于初级数据分析师,能用Excel和PPT做出基本的图表和报告,能清楚的展示数据,就达到目标了。

    对于高级数据分析师,需要探寻更好的数据可视化方法,使用更有效的数据可视化工具,如可视化工具tableau,根据实际需求做出或简单或复杂,但适合受众观看的数据可视化内容。

    对于数据挖掘工程师,了解一些数据可视化工具是有必要的,也要根据需求做一些复杂的可视化图表,但通常不需要考虑太多美化的问题。

    协调沟通

    不是业务,胜似业务!

    对于初级数据分析师,了解业务、寻找数据、讲解报告,都需要和不同部门的人打交道,因此沟通能力很重要。

    对于高级数据分析师,需要开始独立带项目,或者和产品做一些合作,因此除了沟通能力以外,还需要一些项目协调能力。

    对于数据挖掘工程师,和人沟通技术方面内容偏多,业务方面相对少一些,对沟通协调的要求也相对低一些。

    快速学习能力

    哪个行业不喜欢爱学习的人呢?无论做数据分析的哪个方向,初级还是高级,都需要有快速学习的能力,学业务逻辑、学行业知识、学技术工具、学分析框架……数据分析领域中有学不完的内容,需要大家有一颗时刻不忘学习的心。

注意事项

  • 以上就是一个合格的数据分析师应该必备哪些知识结构?的内容,总的来说,一个合格的数据分析师应该深入了解业务,有管理者思维,能站在管理者的角度考虑问题。


作者声明:本篇经验系本人依照真实经历原创,未经许可,谢绝转载。