算法工程师大致是做什么的?
根据行业的PPT或者业务中的某些痛点来提出技术方案 -> 然后开始收集数据,不仅要问遍组内,还要去其他组收集各种各样的需求 -> 根据之前的技术方案来进行数据的预处理 -> 撰写特征工程 -> 训练模型 -> 调参 -> 调参 -> 重新收集数据 -> 数据的预处理 -> 收集更多数据 -> 调参 -> 调参 -> 调参 ->…->放弃。
业务理解
就做机器学习的经验来看,通常来说在做业务之前,一定要清楚的弄明白项目的业务需求是什么,弄清楚这个问题是什么比一开始就写代码重要得多。意思就是在回答问题之前,一定要把问题的内容弄清楚。有的时候,虽然看上去是一个很大的需求,但是实际操作起来的时候使用一些简单的办法也能够达到项目指标。有的时候,虽然看上去很简单,但是实际操作起来并不是一件容易的事情。从之前做理论数学的经验来看,通常数学里面的一些问题是是非题,不能够添加条件的。在PDE 等方程领域,定理的条件越多,表示定理越不值钱。不过在工作中,这些条条框框会相对减少很多,只要能够达成项目目标,无论是添加样本,添加特征,添加服务器数量其实都是可以的,并且要把机器学习模型和业务指标有机结合才能够达到最终的项目指标。
数据清洗和特征工程
而在机器学习算法工程师的日常生活中,除了上面的小段子之外,其实最重要的是样本层和特征层的处理工作。在学术界,都是使用开源的数据,别人都已经完全标记好了,学术圈的人通常来说只需要在这些数据的基础上提出更好的模型,更创新的算法即可。但是在工业界就完全不一样了,不要说有人帮你标记数据了,有的时候连数据在哪里都不知道,数据的质量如何也不知道,因此更多的时候是进行数据的处理和清洗工作。之前做一个项目的时候,准确率和召回率始终上不去,但是等把样本里面的脏数据清理掉之后,模型的效果瞬间提升了一个档次。在脏数据面前,再好的模型都是没有用的,在训练模型之前,一定要先看一下数据层的问题。
在人工智能这个领域,无论是 CV,NLP,还是机器学习,里面的技术迭代都是非常快的,而且是需要相对专业的人才能够从事这些领域。在这种情况下,机器学习从业者的持续学习就显得尤其重要,几年前的技术在新的业务场景下就未必适合,可能需要使用其他的模型或者框架才能够更好地解决问题。所以,除了完成日常的搬砖工作之外,建议每天抽一点时间来阅读论文,保持对业界技术的跟进和迭代。不过这个行业感觉鱼龙混杂,有的时候论文或者PPT里面的技术框架其实没有办法复现,能够精准地判断哪些方案好,哪些方案差绝对是算法工程师必备的关键能力之一。
大学生热门技能相关文章推荐
|大学生热门技能最新文章推荐
|大学生热门技能最新经验推荐
- 教资面试通过之后,你还差这一步就可以拿证了~
- 事关拿证!教师资格什么时候认定,在哪里认定?
- 报考指南:2025年教资笔试日程安排及考试内容
- 教资面试复核通过的几率大吗?教资面试成绩复核攻略
- 25年二建考试时间或将提前,六大专业如何选专业备考?
- 住建厅回复:二级建造师无需继续教育,注册证书到期前可延续注册
- 中级经济师证书全国有效吗?是什么机构颁发的?
- 答疑:考下中级经济师需要在职称系统里申报吗?
- 注意:今年起多地经济师不再发放此表!
- 今日领证!这两地2024年度中级经济师纸质证书今日起可领取!
- 01 北京大约多久能解除疫情?
- 02 《中华人民共和国车船税法》全文
- 03 医师级别划分 十二级
- 04 这几种情况千万不要考消防工程师证书
- 05 2020年开年全球大事件你知道吗?
- 06 公务员存在不同级别 一级科员和一级行政执法员区别在哪
- 07 博士,硕士,研究生哪个学历高
- 08 中级资格证书有哪些
- 09 成人高考和自考有什么区别