大数据工程师业务分析思路是怎样的?
2021-03-03 14:13
524浏览
1回答
如今,数据的重要性不言而喻。在运用数据的一起,数据的运用和挖掘也决定着企业的竞赛价值。数据从开始的原始状况经过数据分析技术的整合,变成关于企业有利的数据源,那么大数据工程师业务分析思路是怎样的?
转载请联系作者获得授权,并标注“文章作者”。
最新文章|
最新问题|
最新经验
1、了解简单情况
经过实时拜访趋势了解供货商及时交货状况。如产品类型,供货商区域(交通因子),收购额,收购额对供货商占比。
2、对目标进行多维分析
依据分析需要,从多维度对目标进行分化。例如产品收购金额、供货商规划(需量化)、产品杂乱程度等等维度。
3、形成转化漏斗
依照已知的转化路径,借助漏斗模型分析总体和每一步的转化状况。常见的转化情境有不同供货商及时交货率趋势等。
4、对用户进行分群
在精细化分析中,常常需要对有某个特定行为的供货商群组进行分析和比对;数据分析需要将多维度和多目标作为分群条件,有针对性地优化供应链,提升供应链稳定性。
5、细查交互路径
数据分析能够观察供货商的行为轨道,探究供货商与本公司的交互过程;进而从中发现问题、激发创意亦或验证假定。
6、进行留存分析
留存分析是探究用户行为与回访之间的相关。一般咱们讲的留存率,是指“新新供货商”在一段时间内“重复行为”的比例。经过分析不同供货商群组的留存差异、运用过不同功用供货商的留存差异来找到供应链的优化点。