如何成为一名真正的数据分析师

  • 原创经验
  • |
  • 更新:
  • |

近些年,互联网公司对数据分析师岗位的需求越来越多,这不是偶然。过去十多年,中国互联网行业靠着人口红利和流量红利野蛮生长;而随着流量获取成本不断提高、运营效率的不断下降,这种粗放的经营模式已经不再可行。互联网企业迫切需要通过数据分析来实现精细化运营,降低成本、提高效率;而这对数据分析师也提出了更高的要求。相信现在有许多小伙伴想要成为数据分析师但不知道从何下手,数据分析师培训机构今天从明确学习目标、确定学习路径、制定学习计划等几个方面来带领大家如何快速成为一名数据分析师。


具体如下

  1. 1

    明确学习目标

    数据分析师工作的流程简单分为两部分,第一部分就是获取数据,第二部分就是对数据进行处理。那么怎么获得数据呢?首先,我们要知道,获取相关的数据,是数据分析的前提。每个企业,都有自己的一套存储机制。因此,基础的SQL语言是必须的。具备基本SQL基础,再学习下其中细节的语法,基本就可以到很多数据了。当每个需求明确以后,都要根据需要,把相关的数据获取到,做基础数据。

    获得了数据以后,才能够进行数据处理工作。获取数据,把数据处理成自己想要的东西,是一个关键点。很多时候,有了数据不是完成,而是分析的开始。数据分析师最重要的工作就是把数据根据需求处理好,只有数据跟需求结合起来,才能发挥数据的价值,看到需求的问题和本质所在。如果连数据都没处理好,何谈从数据中发现问题呢?

    数据分析师基本上可以分为商业分析师、数据运营、数据产品经理等偏向于依赖业务经验的岗位,也有出数据分析师,数据挖掘工程师等偏向技术的岗位。

    如何成为一名真正的数据分析师

  2. 2

    确定学习路径

    成为数据分析师有哪些要求?

    1、理论知识要宽泛,涉及数学、市场和技术。要求及对数据敏感,包括统计知识、市场研究、模型原理等。

    2、常规分析工具的使用,包括数据库、数据挖掘、统计分析工具,常用办公软件(Excel、PPT、思维导图)等等。

    3、有一定的业务理解能力,能理解业务背后的商业逻辑。因为只有理解了商业问题,才能转换成数据分析的问题,从而满足部门的要求。

    4、数据报告和数据可视化的能力。数据分析得再好,如果不能以漂亮的方式“表达”,成效也会大打折扣。

    现在大多工作都需要你拥有逻辑分析能力,尤其是对数据的分析理解。在数据化运营理念深入的今天,BAT这样的大型互联网公司强调全员参与数据化运营,把数据分析当作一种能力在培训,也必定是未来趋势。

  3. 3

    制定学习计划

    对于数据分析初学者而言,首先要学会使用频率最高的3个工具。

    (1)sql

    学习写sql是做数据分析师的第一步,对于没有数据库和编程语言基础的人来讲,也并不是一件十分困难的事儿,关键在于你是否能找到一个“好师傅”带你飞,这里的“好师傅”一是指教你写sql的入门书籍,上面会系统的讲解sql的相关知识并且最好有实例教学;二是指在工作中会有前辈教你一些书写sql的良好习惯以及优化代码的方法等等(要知道把功能实现是一码事儿,高效的把功能实现是另一码事儿)。这里附上一本我学习sql的书,需要的人自行认领——《SQL基础教程》MICK 著(人民邮电出版社)。优化sql的方法如有需要,我会再开一篇文章给大家分享。

    (2)excel

    我认为第二重要的工具是excel,而非R,SAS, SPSS, 作为数据分析师,其实和建模师不同的是,分析师更多的时候是在分析数据,而不是建模,分析数据的时候你总得把数据放到一个文件里边是吧,这个文件就是excel。excel的功能远比我们想象的要强大许多,我见过每天用excel做报表的(还是在大型互联网公司),见过每天写vba处理上百封数据的,见过用excel画出十分精美的图表的,毫不夸张的说,做为一个数据分析师基本每天都要打开关闭几十个excel。那么,怎么把excel用的好呢?我觉得有一下几个模块要学会

    第一个是公式,excel常用公式要熟练,网上很多教程,很容易找到。

    第二个是数据透视表,因为分析数据的时候经常需要拆分到更细的粒度,所以数据透视表不可或缺。

    第三个是图表,excel的图表功能基本已经可以满足一个数据分析师的日常需要了,但是什么数据画什么图,这也是一门学问,比如说想要表达趋势,那最好画线图,如果是想表示各个部分的占比,无需纵向对比,那最好画饼图。(这里如有需要我会再开一篇文章写图表的使用方法)。

    (3)统计工具(R or SPSS)

    一般情况下数据分析师极少会用到统计软件,但是在一些特殊情况下会有用到。比如有的公司也会要求数据分析师做建模一类的工作(一般这类公司缺少数据挖掘的专业人才),这个时候数据分析师可能首先需要了解一些经典的统计模型(最最常用的是逻辑回归模型),为了快速掌握,其实你大可不必去找一本《机器学习》去死磕书本,而是只要了解这个模型的使用场景、数据处理的方法、使用何种软件实现就可以了,这里可能会要求你有一定的概率统计基础,但就算是没有,你也不必要特别担心,搞清楚模型的输入和输出,最后证明模型真的是有用的,这才是王道。

注意事项

  • 以上就是小编今天给大家整理发送的关于“如何成为一名真正的数据分析师”的相关内容,希望对大家有所帮助。练就数据分析的洪荒之力并非一朝一夕之功,而是在实践中不断成长和升华。一个优秀的数据分析师应该从精进自己做起,不断学习才能够丰富自己的职场道路。


作者声明:本篇经验系本人依照真实经历原创,未经许可,谢绝转载。

相关经验